% This code takes a structure of images and their corresponding masks and % splits them in individual images corresponding to objects in the original % image. This is done applying the watershed algorithm. % This code uses functions found in Image Processing Toolbox and the % HyperTools toolbox (https://www.hypertools.org/). % image = structure. Size = number of images. % images(i).data = cube (height x width x spectrum) containing the data of % a hyperspectral image. No axes or labels. % image(i).mask = logical array (height x width in pixels) stating if each % pixel is included in the analysis. 1=Included 0=Not included % Author: Jokin Ezenarro Garate. 17/02/2025 % Citation and illustrative example: https://doi.org/10.1016/j.saa.2025.125906 images= ; %Select your dataset MinItemSize = 50; % Size (in pixels) of the smallest thing considered as object. for i=1:size(images) %Loop through images close all imageCut=split(images(i).data,images(i).mask,MinItemSize); ask=1; while ask==1 close all x = input("1=Continue 0=Repeat \n"); if x==0 imageCut=split(images(i).data,images(i).mask,30); else ask=0; end end imCut{i}=imageCut; end disp("You're done!") %% function imageCut=split(data,mask,MinItemSize) %bw = mask ~= 0; The predefined mask could be used but it's not so %sensitive to gradients in the spectra A = htfakergb(data,mask); A1=1-((squeeze(double(A(:,:,2)))-30)./256); %Using one of the channels % is more sensitive to empty spaces and divides objects better. The % number 30 is an adjustment to this sensitivity, can be changed. bw=round(A1,0); bw = imerode(bw,strel("disk",1)); %Remove small objects bw = bwareaopen(~bw,20); bw = bwareaopen(~bw,200); bw = imerode(bw,strel("disk",1)); D = bwdist(~bw); D = -D; %% S = watershed(D,26); %Do the object division S(~bw) = 0; %imagesc(S); Mitems=max(max(S)); %% Divide objects in masks clear a b m items=0; for i=1:Mitems a=find(S==i); if size(a,1)>MinItemSize items=items+1; b=zeros(size(mask,1),size(mask,2)); b(a)=1; m(items,:,:)=b; end end %% Plot objects masks on original image A = htfakergb(data,mask); figure,imagesc(A); hold on for i=1:items n=squeeze(m(i,:,:)); f=imshow(n); set(f, 'AlphaData', n*0.3); text(mean(find(sum(n,1)>0)),mean(find(sum(n,2)>0)),string(i)) end %% Plot each of the new objects f=figure; for i=1:items n=squeeze(m(i,:,:)); ny=sum(n,2); ly=find(ny>0); nx=sum(n,1); lx=find(nx>0); imageCut(i).data=data(ly(1):ly(end),lx(1):lx(end),:); imageCut(i).mask=logical(n(ly(1):ly(end),lx(1):lx(end),:)); nexttile v = htfakergb(imageCut(i).data,imageCut(i).mask); imagesc(v); title(i) end clear n ny nx ly lx v %% Check if the objects are alright or should be modified ask=1; while ask==1 clear x x = input("Remove or combine any objects? \n 0=No \n i=Remove object i \n [i1,i2]=Combine those objects \n"); if size(x,2)<2 if x==0 ask=0; else imageCut(x)=[]; m(x,:,:)=[]; %Plot again close(f) f=figure; for i=1:size(imageCut,2) nexttile v = htfakergb(imageCut(i).data,imageCut(i).mask); imagesc(v); title(i) end end else over=min(x); del=max(x); n1=squeeze(m(x(1),:,:)); n2=squeeze(m(x(2),:,:)); n=n1+n2; ny=sum(n,2); ly=find(ny>0); nx=sum(n,1); lx=find(nx>0); imageCut(over).data=data(ly(1):ly(end),lx(1):lx(end),:); imageCut(over).mask=logical(n(ly(1):ly(end),lx(1):lx(end),:)); m(over,:,:)=n; imageCut(del)=[]; m(del,:,:)=[]; %Plot again close(f) f=figure; for i=1:size(imageCut,2) nexttile v = htfakergb(imageCut(i).data,imageCut(i).mask); imagesc(v); set(gca,'XTick',[], 'YTick', []) title(i) end end end end