

Paper-based organic electrochemical transistor array for multi-analyte detection

Jordi Riu, Ariadna Dasca, Pascal Blondeau and Francisco J. Andrade Universitat Rovira i Virgili, Dept. Analytical and Organic Chemistry C/Marcel·lí Domingo 1, 43007 Tarragona, Spain

e-mail: jordi.riu@urv.cat

27 - 30 JUNE 2023 PADOVA - ITALY

chemosens@urv.cat \searrow

www.chemosens.recerca.urv.cat

INTRODUCTION

In recent years, organic electrochemical transistors (OECTs) using poly-(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), a p-type organic semiconductor polymer, have emerged as a promising alternative due to their high-amplification capacities, robust analytical performance and versatility.^{1,2} The present work proposes a compact multi-analyte transistor array with outstanding analytical performance. Ion-selective organic electrochemical transistors (IS-OECTs) were developed by combining the thick-film technology with the optimum ion-selective membrane.³ The application of multivariate calibration models enhances the analytical performance, allowing the detection and quantification of ions of interest in complex matrices with interfering potentials.⁴ A single gate for three transistors enables the miniaturization of the set-up.

EXPERIMENTAL WORK

2. Schematic of the measurement cell

3. Analytical performance

 Optimal methodology for the creation of paper-based sensors.

1. Sensor construction

- Compact array of transistors in a potentiometric cell.
- The increase in concentration of PEDOT produces an improvement in the analytical performance of the sensor in terms of sensitivity.
- DMSO reduce the time before calibration and the variability between sensors.

RESULTS AND DISCUSSION

4. Range of interest in human saliva

5. Potassium sensor selectivity

6. Figures of merit of multivariate model

Analyte	RMSEC	Calibration Bias	R ² (Cal, CV)	RMSEP	Prediction Bias	R ² (Pred)
NH ₄ +	0.117	4.441e-16	0.969, 0.960	0.131	0.013	0.968
Na+	0.119	-8.882e-16	0.953, 0.946	0.120	-0.028	0.953
K+	0.118	4.441e-16	0.973, 0.966	0.136	-0.035	0.967

• Latent variables: 2

• Training set samples: 33

• Test set samples: 22

- Venetian blinds method (with 10 data splits and 1 samples per blind) was used for cross-validation of the training set.
- The PLS Toolbox running on Matlab was used for calculations.

• All three sensors are linear in the range of interest. • Data processing through chemometrics is required

Analyte	Range of interest (mM)		
NH ₄ ⁺	0.8 - 12.3		
Na ⁺	4.0 - 37.0		
K+	2.6 - 51.2		

for selective detection and quantification.

Conclusions

- \checkmark Affordable, sensitive, rapid, robust and reproducible paper-based transistors. \checkmark Sensor analytical performance depends on the concentration of PEDOT:PSS. \checkmark Sensors allow to discriminate ions with similar atomic radius and lipophilicity.
- Multiplex ion sensing using different ISM and a single gate. \checkmark
- \checkmark Multivariate model creation and internal validation to selectively detect and quantify the different ions in presence of interferences.

Future work

External validation with real samples.

References

- Rivnay, et al. Nat. Rev. Mater., 2018, 3, 17086.
- Ait Yazza, A.; Blondeau, P.; Andrade, F.J. ACS Appl. Electron. Mater., 2021, 3, 1886-1895.
- Han, et al. Adv. Mater., **2020**, 32, 2004790. 3
- Ataş, H. B.; Kenar, A.; Taştekin, M. *Talanta*, **2020**, *217*, 121110. 4.

Acknowledgements

Universitat Rovira i Virgili for the PhD Fellowship Martí Franquès call (2021PMF-PIPF-21), Generalitat de Catalunya (2021 SGR 00705) as well as the Spanish Ministry of Science and Innovation (MICINN) and the State Research Agency (AEI) (PID2019-106862RB-100).

