

Paper-based organic electrochemical transistor array for multi-analyte detection

Ariadna Dasca, Pascal Blondeau, Jordi Riu and Francisco J. Andrade

Universitat Rovira i Virgili, Dept. Analytical and Organic Chemistry Marcel·lí Domingo 1, 43007 Tarragona, Spain e-mail: jordi.riu@urv.cat; franciscojavier.andrade@urv.cat

INTRODUCTION

In recent years, organic electrochemical transistors (OECTs) using poly-(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), a ptype organic semiconductor polymer, have emerged as a promising alternative due to their-high-amplification capacities, robust analytical performance and versatility.^{1,2} The present work proposes a compact multi-analyte transistor array with outstanding analytical performance. Ion-selective organic electrochemical transistors (IS-OECTs) were developed by combining the thick-film technology with the optimum ionselective membrane.³ The application of multivariate calibration models enhances the analytical performance, allowing the detection and quantification of ions of interest in complex matrices with interfering potentials.⁴ A single gate for three transistors enables the miniaturization of the set-up.

2. Schematic of the measurement cell **1. Sensor construction**

3. PEDOT conditions

RESULTS AND DISCUSSION

4. Analytical performance

5. Range of interest in human saliva

6. Potassium sensor selectivity

- The increase in concentration of PEDOT produces an All three sensors are linear in the range of interest. improvement in the analytical performance of the sensor in terms of sensitivity.
- DMSO reduce the time before calibration and the variability between sensors.

Analyte	Range of interest (mM)
NH_4^+	0.8 - 12.3
Na ⁺	4.0 - 37.0
K ⁺	2.6 - 51.2

• Data processing through chemometrics is required for selective detection and quantification.

CONCLUSIONS

✓ Affordable, sensitive, rapid, robust and reproducible paper-based transistors. \checkmark Sensor analytical performance depends on the concentration of PEDOT:PSS.

- \checkmark Sensors allow to discriminate ions with similar atomic radius and lipophilicity.
- \checkmark Multiplex ion sensing using different ISM and a single gate.

- Multivariate model creation to selectively detect and quantify the \bullet different ions in presence of interferences.
- Validation of the model with real samples. ullet

- Ait Yazza, A.; Blondeau, P.; Andrade, F.J. ACS Appl. Electron. Mater., **2021**, *3*, 1886-1895.
- Han, et al. Adv. Mater., **2020**, 32, 2004790. 3.
- Ataş, H. B.; Kenar, A.; Taştekin, M. *Talanta*, **2020**, *217*, 121110.

Universitat Rovira i Virgili for the PhD Fellowship Martí Franquès call (2021PMF-PIPF-21), Generalitat de Catalunya (2021 SGR 00705) as well as the Spanish Ministry of Science and Innovation (MICINN) and the State Research Agency (AEI) (PID2019-106862RB-I00).

